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Transport properties of ultrasmall quantum dots with a single unpaired electron are commonly modeled by
the nonequilibrium Kondo model, describing the exchange interaction of a spin-1

2 local moment with two leads
of noninteracting electrons. Remarkably, the model possesses an exact solution when tuned to a special
manifold in its parameter space known as the Toulouse limit. We use the Toulouse limit to exactly calculate the
adiabatically pumped spin current in the Kondo regime. In the absence of both potential scattering and a
voltage bias, the instantaneous charge current is strictly zero for a generic Kondo model. However, a nonzero
spin current can be pumped through the system in the presence of a finite magnetic field, provided the spin
couples asymmetrically to the two leads. Tunneling through a Kondo impurity thus offers a natural mechanism
for generating a pure spin current. We show, in particular, that one can devise pumping cycles along which the
average spin pumped per cycle is closely equal to �. By analogy with Brouwer’s formula for noninteracting
systems with two driven parameters, the pumped spin current is expressed as a geometrical property of a
scattering matrix. However, the relevant scattering matrix that enters the formulation pertains to the Majorana
fermions that appear at the Toulouse limit rather than the physical electrons that carry the current. These results
are obtained by combining the nonequilibrium Keldysh Green function technique with a systematic gradient
expansion, explicitly exposing the small parameter controlling the adiabatic limit.
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I. INTRODUCTION

The act of pumping is well known from everyday life. By
repeatedly operating a periodic sequence of steps, one can
transfer a certain amount of fluid or gas between reservoirs
held at equal potential. The same principle applies to electri-
cal charge. By periodically modulating spatially confined po-
tentials, it is possible to generate a nonzero dc current be-
tween leads that are kept at equal temperature and
electrochemical potential. When operated sufficiently slow
such that the typical scattering time for electrons is much
faster than the time over which the scattering potentials vary,
this process is known as adiabatic quantum pumping. Re-
cently, there has been considerable theoretical1–19 and
experimental20–23 interest in adiabatic quantum pumping in
confined nanostructures. Besides the fundamental and tech-
nological importance of understanding time-dependent phe-
nomena in nanodevices such as semiconductor and carbon
nanotube quantum dots, adiabatic quantum pumping offers
new possibilities that otherwise are difficult to realize in con-
ventional dc transport measurements with a finite voltage
bias. Most notably, the ability to pump a quantized amount of
charge per cycle,20,22 which is of potential metrological im-
portance. In this paper, we address another such example, the
generation of pure, possibly quantized spin current without
any charge current.13–19,23

In the absence of interactions, adiabatic pumping is by
now well understood. In particular, building on the scattering
approach of Büttiker et al.,24 Brouwer has elegantly shown2

that the adiabatically pumped current can be expressed in
terms of the instantaneous �equilibrium� scattering matrix. In
the case of two driven parameters, the pumped charge per
cycle reduces to a geometrical property of the equilibrium

scattering matrix, pertaining to the area enclosed in param-
eter space by the pumping cycle. All other details of the
pumping cycle, i.e., the explicit time dependences of the
scattering potentials, are irrelevant as long as pumping is
adiabatic.

Far less understood are the effects of interactions, where
efforts have focused thus far on zero-dimensional3,11,13 and
one-dimensional12,14 systems. The difficulty with incorporat-
ing interactions lies in the need to treat retardation effects
beyond the static limit. Indeed, recent attempts to generalize
Brouwer’s formula so as to include interactions25–27 have
required either the introduction of complicated vertex
corrections25,26 or the application of a gradient expansion to
interaction-induced self-energies.27 Both formulations can
only be implemented approximately at this stage, urging the
need for benchmark results against which approximate treat-
ments can be tested. In this paper, we provide such an exact
result for the pumped currents through a Kondo impurity.

Kondo-assisted tunneling has been observed by now in an
abundance of nanostructures, ranging from semiconductor28

and nanotube29 quantum dots to single-atom30 and
single-molecule31 transistors. In the Kondo regime, these
systems are described by the well-known Kondo model: a
spin-1

2 local moment undergoing antiferromagnetic spin ex-
change with the conduction electrons in the leads. The non-
equilibrium Kondo model, either with a static or a time-
dependent voltage bias, is a difficult problem. Remarkably, it
possesses an exact solution when tuned to a special manifold
in its parameter space, known as the Toulouse limit.32,33 At
the Toulouse limit, one can apply a suitable canonical trans-
formation to recast the interacting problem in free, quadratic
form. This requires the introduction of new fermionic de-
grees of freedom having no simple relation to the physical
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electrons in the leads. The resulting solution, which general-
izes previous exact results for the equilibrium Kondo
problem,34,35 does not correspond to realistic parameters. It
requires large values of certain exchange couplings �see be-
low�, rendering it incapable of describing weak-coupling
physics. However, the Toulouse limit is expected to correctly
describe the strong-coupling regime of the nonequilibrium
Kondo effect, as different microscopic models are governed
by the same strong-coupling fixed point. Indeed, previous
applications of the model to dc,32,33 ac,36 and pulsed-bias
potentials37 have shown all the qualitative features of Kondo-
assisted tunneling: a zero-bias anomaly that splits in an ap-
plied magnetic field, Fermi-liquid characteristics in the low-
T and low-V differential conductance, side peaks in the dif-
ferential conductance at eV= �n�� for an ac drive of fre-
quency �, and a hierarchy of time scales for the rise, satura-
tion, and falloff of the current in response to a pulsed-bias
potential. The Toulouse limit was also recently applied to
compute the full counting statistics for tunneling through a
Kondo impurity.38,39

In this paper, we take the solution one step further by
exactly computing the adiabatically pumped currents on the
Toulouse manifold. Contrary to previous applications of the
Toulouse limit to Kondo-assisted tunneling, we set the volt-
age bias to zero but consider a general periodic modulation
of the transverse exchange couplings and the local magnetic
field �the free parameters on the Toulouse manifold�. In the
limit of slow time variations, we obtain an exact analytic
expression for the adiabatically pumped spin current. In par-
ticular, we show that a nonzero spin current can be pumped
through the system for a time-varying magnetic field, pro-
vided the couplings to the two leads are made asymmetric.
Such a condition is easily met in practical devices. Unlike
the spin current, the instantaneous charge current is strictly
zero in the absence of both potential scattering and a voltage
bias, as follows from general symmetry considerations. This
feature is generic to the Kondo model, independent of the
adiabatic and Toulouse limits. Hence, tunneling through a
Kondo impurity offers a natural mechanism for the realiza-
tion of a spin battery, i.e., a source of pure spin current with-
out any charge current. This statement, valid both in the adia-
batic limit and beyond, is in qualitative agreement with
earlier slave-boson mean-field studies of adiabatic pumping
through an Anderson impurity,13,25 indicating that no fine
tuning of model parameters is required as long as one oper-
ates in the Kondo regime. Finally, we show that one can
devise suitable pumping cycles that operate as a quantized
spin pump. Namely, a spin closely quantized to � is pumped
per cycle without an accompanying charge.

As indicated above, the solution at the Toulouse limit re-
lies on a nonlocal transformation that converts the original
spin-exchange Hamiltonian to free-fermion form.35,33 In con-
trast to conventional quadratic Hamiltonians, though, the
number of fermions �not to be confused with the physical
electrons in the system� is not conserved, excluding the ap-
plication of Brouwer’s formula in its existing form. To gen-
eralize Brouwer’s result to this somewhat unconventional
case, we follow a path similar to the one taken by Vavilov
et al.7 in studying the photovoltaic effect in open chaotic
cavities. Starting from the nonequilibrium Keldysh Green

function technique, we show how the adiabatic limit is ob-
tained from a systematic gradient expansion. In this manner,
we are able to express the instantaneous spin current in terms
of an energy-shift matrix,6 leading to a Brouwer-type for-
mula for the adiabatically pumped spin current.

The formalism outlined above has three notable advan-
tages over the scattering approach24 originally used by Brou-
wer to derive his result: �i� It conveniently accommodates the
case where particles are not conserved. �ii� All orders of
perturbation theory are summed up in the Keldysh technique,
thus exceeding linear response. �iii� Based on a systematic
gradient expansion, one can easily read off the small param-
eter controlling the adiabatic limit. We emphasize, however,
that the resulting Brouwer-type formula for the electronic
spin current is formally expressed in terms of the scattering
matrix for the Majorana fermions that appear in the trans-
formed Hamiltonian. While technically useful, these degrees
of freedom have neither a simple representation nor a simple
interpretation in terms of the physical electrons in the leads,
thus obscuring a clear physical picture. It remains to be seen
whether a similar expression can be written down for the
spin current directly in terms of the scattering properties of
the lead electrons which carry the current.

The remainder of the paper is organized as follows. In
Sec. II, we briefly review the Toulouse limit, introducing the
different Green functions that will be used later in the course
of the calculation. In Sec. III, we present general symmetry
considerations and apply them to the problem at hand. In
particular, we show that the instantaneous charge current is
strictly zero in the absence of potential scattering, whereas
the spin current is zero unless the dot couples asymmetrically
to the two leads. Proceeding with quantitative calculations,
we combine the Keldysh technique with a gradient expan-
sion in Sec. IV to derive a Brouwer-type formula for the
adiabatically pumped spin current in the Toulouse limit. Us-
ing this formula, a specific class of pumping cycles is ana-
lyzed in detail in Sec. V. In particular, we demonstrate a
pumping cycle for which the total spin pumped per cycle is
closely equal to �, thus operating as a quantized spin pump.
Finally, we present our conclusions in Sec. VI.

II. PHYSICAL MODEL AND TOULOUSE LIMIT

We begin with a brief review of the Toulouse limit and
with introducing the different Green functions that will be
used later in calculating the pumped spin current. The physi-
cal system under consideration is shown schematically in
Fig. 1. A spin-1

2 local moment � is embedded between two
leads of noninteracting spin-1

2 electrons, undergoing a spin-
exchange interaction with the local conduction-electron de-
grees of freedom on either side of the junction. As empha-
sized in Sec. I, the impurity moment � can represent either an
ultrasmall quantum dot with a single unpaired electron28 or
an actual magnetic impurity as in single-atom30 and
single-molecule31 transistors.

Since scattering off the impurity is restricted to the
s-wave channel, one can reduce the conduction-electron de-
grees of freedom that couple to the impurity to one-
dimensional fields ����x�, where �=R ,L labels the lead
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�right or left� and �= ↑ ,↓ specifies the spin orientations. In
terms of the one-dimensional fields, coupling to the impurity
takes place via the local spin densities at the origin: s���

= 1
2��,�����

† �0��� �,�������0�. The most general form of a
spin-exchange Hamiltonian is therefore

H = ivF �
�=L,R

�
�=↑,↓

�
−	

	

���
† �x��x����x�dx

+ �
�,�=L,R

�

=x,y,z

J

���t��
s��


 − �BgiH�t��z, �1�

where we have allowed for different exchange couplings
J


��=J

�� and for a local magnetic field H acting on the im-

purity spin. Here, �B and gi are the Bohr magneton and
impurity Landé g factor, respectively. Throughout the paper,
we use units for which �=kB=1, while the electronic charge
is taken to be −e. Proper units will be reinstated in some of
the final expressions presented below.

The Hamiltonian of Eq. �1� is written for general time-
dependent exchange couplings J


���t� and local magnetic
field H�t�. Our interest, however, will be in slow periodic
modulations of the transverse couplings Jx

���t�=Jy
���t� and

the local magnetic field. The longitudinal couplings Jz
�� will

be taken to be constant in time and equal to particular values
as detailed below. It is the fine tuning of Jz

�� that defines the
Toulouse manifold and enables our exact solution.

A. Toulouse limit

The spin-exchange Hamiltonian of Eq. �1� is convention-
ally derived from the more basic Anderson impurity model
via the Schrieffer-Wolff transformation.40 The couplings J


��

generated in this case are weak, isotropic �i.e., independent
of 
�, and satisfy JLLJRR= �JLR�2. The Toulouse limit corre-
sponds to a different sector in the parameter space of the
Kondo Hamiltonian where Jz

LL=Jz
RR=2�vF and Jz

LR=0. The
transverse couplings Jx

���t�=Jy
���t��J�

���t� and the local
magnetic field H�t� are allowed to be arbitrary and will be
subsequently taken to be periodically modulated in time.
Physically, this choice of parameters implies that tunneling is
always accompanied by a spin flip. Although quite remote
from the situation encountered in real quantum dots, this
model is expected to correctly describe the strong-coupling
regime of the Kondo effect, as argued in Sec. I and elabo-

rated on in Refs. 32, 33, and 37. In particular, it has been
shown33 that the strong-coupling physics of the Anderson
impurity model is best described both in and out of equilib-
rium by couplings that satisfy

J�
LLJ�

RR = �J�
LR�2. �2�

As described in detail in Ref. 33, the Hamiltonian of Eq.
�1� can be mapped under the conditions listed above onto a
free-fermion form. The mapping involves a sequence of
steps, comprised of �i� bosonizing the fermion fields, �ii� a
nonlocal canonical transformation involving the conduction-
electron spin degrees of freedom, and �iii� refermionization
of the boson fields to form four new fermion fields: ��x�
with =c ,s , f ,sf. Here c, s, f , and sf stand for charge, spin,
flavor �left minus right�, and spin-flavor fields. In addition,
the impurity spin �, which has been mixed by the canonical
transformation with the conduction-electron spin degrees of
freedom, is represented in terms of two real Majorana fermi-

ons: â=−�2�y and b̂=−�2�x. At the conclusion of these
steps, one arrives at a quadratic Hamiltonian conveniently
written in the form

H� = �
=c,s,f ,sf

�
k

�k�,k
† �,k + i�BgiH�t�b̂â + iJsf

+ �t��̂sf
+ b̂

+ iJsf
− �t��̂sf

− â + iJf
−�t��̂ f

−â , �3�

where we have introduced the three couplings

Jsf
+ �t� =

J�
LL�t� + J�

RR�t�

2�2�a
, �4�

Jsf
− �t� =

J�
LL�t� − J�

RR�t�

2�2�a
, �5�

Jf
−�t� =

J�
LR�t�

�2�a
. �6�

Here, the energies �k are equal to −vFk, a is an ultraviolet
momentum cutoff corresponding to a lattice spacing, and L is
the effective size of the leads �i.e., k is discretized in units of
2� /L�. The fields �̂

� �= f ,sf� are local Majorana fermions,
defined as

�̂
+ =

1
�2L

�
k

��,k
† + �,k� , �7�

�̂
− =

1

i�2L
�

k

��,k
† − �,k� . �8�

Relaxation of each of the conditions Jz
LR=0, Jz

LL+Jz
RR

=4�vF, and Jz
LL−Jz

RR=0 introduces a different interaction
term into the Hamiltonian of Eq. �3�, as discussed in Ref. 41
and detailed below.

Although noninteracting, the Hamiltonian of Eq. �3� is
unconventional in the sense that it does not conserve the
number of � fermions �not to be confused with the physical
electrons in the system�. Indeed, the fermion fields ��x�
with =c ,s , f ,sf have neither a simple representation nor a

FIG. 1. �Color online� Schematic description of the physical
system. A spin-1

2 local moment � is placed in between two leads of
noninteracting spin-1

2 electrons. The local moment � experiences a
spin-exchange interaction with the local conduction-electron de-
grees of freedom near the junction, as described by the Hamiltonian
of Eq. �1�. Tunneling between the leads is facilitated by spin-
exchange terms that scatter an electron across the junction.
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simple interpretation in terms of the original electronic de-
grees of freedom. Consequently, not all observables can be
computed based on the mapping of Eq. �3�. Only observables
that have a simple representation in terms of the � fields are
accessible. Fortunately, both the charge and spin currents fall
in this category.

To derive the transformed forms of the electronic charge
and spin currents, it is necessary to go back to their original
representation in terms of the physical electrons in the leads.
Denoting the total number operator for electrons with spin

projection � in lead � by N̂��, the charge current flowing
from right to left is given by

Îc = − ie�H,N̂L↑ + N̂L↓� = ie�H,N̂R↑ + N̂R↓� . �9�

Here, H is the Kondo Hamiltonian of Eq. �1�. Since charge
fluctuations are excluded on the dot, the instantaneous charge
current outgoing from the left lead �left commutator� is iden-
tical to the instantaneous charge current flowing into the
right lead �right commutator�. This is no longer the case with
the spin current, defined as half the difference in particle
currents between the spin-up and spin-down electrons. �The
factor of one-half comes from the electronic spin projection
in the z direction.� Indeed, the spin currents associated with
the left and right leads differ by a term proportional to
d�z /dt, which stems from conservation of the total spin pro-
jection Stotal

z of the entire system. Fortunately, this difference
in currents has no significance for our purposes, since d�z /dt
averages to zero over a single pumping cycle. This grants us
the freedom to work with our operator of choice. In the fol-
lowing, we shall concentrate on the symmetrized spin cur-
rent, i.e., the average of the spin currents to the left and to the
right of the impurity, which turns out to be the most conve-
nient current combination to work with. With this conven-
tion, the �symmetrized� spin current flowing from left to
right is written as

Îs =
i

4
�H,N̂R↑ − N̂R↓ − N̂L↑ + N̂L↓� . �10�

Equations �9� and �10� specify the electronic charge and
spin currents in terms of the physical electrons. The trans-

formed operators, Îc� and Îs�, are obtained by repeating the
same sequence of steps as applied to the Hamiltonian,
namely, bosonization, a nonlocal canonical transformation,
and refermionization. Skipping the details of the algebra,33

we quote here only the end result:

Îc� = ieJf
−�t��̂ f

+â �11�

and

Îs� =
i

2
�Jsf

− �t��̂sf
+ â − Jsf

+ �t��̂sf
− b̂� . �12�

Note that although these expressions are written in terms of
Majorana fermions, they describe the actual electronic
charge and spin currents flowing in the system. The uncon-
ventional forms of the currents stem from the nonlocal trans-
formation that has been applied.

B. Keldysh Green functions

To compute the spin current, we shall make use of the
nonequilibrium Keldysh Green function technique. The basic
ingredients of the theory are the greater, lesser, retarded, and
advanced Majorana Green functions, defined as42

G��
� �t,t�� = 	�̂�t��̂�t��
 , �13�

G��
� �t,t�� = 	�̂�t���̂�t�
 , �14�

G��
r,a�t,t�� = � i���t � t��	��̂�t�,�̂�t���
 . �15�

Here, � ,�� �a ,b�, while the upper and lower signs in Eq.
�15� correspond to the retarded �r� and advanced �a� Green
functions, respectively. The curly brackets in Eq. �15� denote
the anticommutator.

In thermal equilibrium, the Majorana Green functions are
easily found by summing all orders of the perturbation
theory in the time-independent couplings Jsf

�, Jf
−, and H. Spe-

cifically, switching over to the energy domain and assuming
the wide-band limit, one obtains

Gr,a��� =
1

�� � i�a��� � i�b� − ��BgiH�2

�� � i�b − i�BgiH

i�BgiH � � i�a

� . �16�

Here, we have adopted a 2�2 matrix notation, with the in-
dices 1 and 2 corresponding to a and b, respectively.

Equation �16� features two new energy scales,

�a = ��0��Jf
−�2 + �Jsf

− �2� �17�

and

�b = ��0�Jsf
+ �2, �18�

where �0=1 /2�vF is the density of states per unit length in
the leads. These two scales determine the widths of the vari-
ous Majorana spectral functions, and thus play the role of
Kondo temperatures at the Toulouse limit. The conventional
single-channel Kondo effect is best described by the case
where �a=�b�TK, corresponding to the condition specified
in Eq. �2�. The equilibrium greater and lesser Green func-
tions are related in turn to Gr,a��� through standard identities:

G��
� ��� = i�1 − f�����G��

r ��� − G��
a ���� , �19�

G��
� ��� = if����G��

r ��� − G��
a ���� , �20�

where f��� is the Fermi-Dirac distribution function.
As emphasized above, Eqs. �16�–�20� are restricted to

thermal equilibrium. They do not apply when any of the
couplings Jsf

�, Jf
−, and H is time dependent, which is the case

of interest here. Indeed, time-dependent couplings are gener-
ally difficult to treat analytically even for noninteracting sys-
tems. Below, we shall first derive the instantaneous spin cur-
rent for a general time-dependent setting but will eventually
be interested in slow periodic modulations of the four cou-
pling constants listed above. In terms of the original spin-
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exchange Hamiltonian of Eq. �1�, we allow for general time
variation of the couplings J�

�� and field H but demand that
the longitudinal exchange couplings Jz

�� be held fixed at their
Toulouse-limit values. We exclude variations in the phase of
J�

LR= �J�
RL�*, as this corresponds to biasing the system. Ac-

cordingly, we take J�
LR=J�

RL to be real throughout the paper.

C. Deviations from the Toulouse limit

We conclude this section by briefly describing the modi-
fications that are introduced into the Hamiltonian and the
current operators upon departure from the Toulouse mani-
fold. As discussed in Ref. 41, the Hamiltonian of Eq. �3� is
supplemented by three new interaction terms away from the
Toulouse limit:

H� → H� + Hint, �21�

with

Hint = − Jz
LRb̂â�̂ f

−�̂sf
+ − i

Jz
+

L
b̂â�

k,k�

:�s,k
† �s,k�:

− i
Jz

−

L
b̂â�

k,k�

:�sf,k
† �sf,k�: . �22�

Here, �̂
� are the local Majorana fields of Eqs. �7� and �8�,

while: �,k
† �,k�: stands for normal ordering with respect to

the unperturbed Fermi sea of the � fermions. The three cou-
plings Jz

−= �Jz
LL−Jz

RR� /2, Jz
+= �Jz

LL+Jz
RR� /2−2��vF, and Jz

LR

measure the deviations from the Toulouse manifold in each
of the three possible directions in parameter space. The new

tunneling term Jz
LR, also modifies the current operators Îc� and

Îs�, which take the general forms

Îc� = ieJf
−�t��̂ f

+â − eJz
LR�t��̂ f

+�̂sf
+ b̂â �23�

and

Îs� =
i

2
�Jsf

− �t��̂sf
+ â − Jsf

+ �t��̂sf
− b̂� +

Jz
LR�t�
2

�̂ f
−�̂sf

− b̂â . �24�

Here, we have explicitly allowed for time variation of the
new coupling constant Jz

LR.

III. SYMMETRY CONSIDERATIONS

Before proceeding to detailed calculations, in this section
we first present general symmetry considerations applicable
to any two-lead system. By analyzing their implications for
the Kondo Hamiltonian of Eq. �1�, we identify necessary
conditions for finite charge and spin currents to be pumped
through the system.

A. Particle-hole symmetry acting separately on each lead

Consider a general two-lead system where each lead is
represented by a single spinful channel. The charge current
flowing into lead � ��=L ,R� is given by

Îc,� = − ie�H,N̂�↑ + N̂�↓� , �25�

while the symmetrized spin current Îs flowing from left to

right is specified in Eq. �10�. Here, N̂�� denotes the total
number operator for electrons with spin projection � on lead
�. Let us consider the situation where the time-dependent
Hamiltonian H is invariant under a particle-hole transforma-
tion that converts particles on each lead to opposite-spin
holes on the same lead �i.e., c�,k,�

† →ei���c�,−k,�̄, where �̄ is
the spin index opposite to �; the phases ��� are arbitrary�.
The total number operator for electrons on lead �, N̂�

� N̂�↑+ N̂�↓, is converted under such a transformation to n�

− N̂�, where n� marks the total number of electronic states in

lead �. Consequently, Îc,� transforms according to

Îc,� = − ie�H,N̂�� → − ie�H,n� − N̂�� = − Îc,�. �26�

If the system begins its evolution from equilibrium, i.e., the
statistical averaging at time t depends solely on the Hamil-
tonian at previous times, then the instantaneous charge cur-

rent Ic,��t��	Îc,��t�
=−	Îc,��t�
 must necessarily be zero.
The above argumentation is quite general, making no ref-

erence to the microscopic details of H nor to the temperature
T. Its usefulness lies in revealing the necessary �but not suf-
ficient� condition for a finite instantaneous charge current to
flow: Either the Hamiltonian is not permanently invariant
under the particle-hole transformation indicated above or the
statistical averaging is not determined by the Hamiltonian
alone �as in the case of a finite voltage bias�. Note that this
symmetry bears no information on the spin current, as the
latter is invariant under the particle-hole transformation
specified above.

B. Particle-hole symmetry that interchanges the two leads

An equivalent statement can be made about the symme-

trized spin current Is�t�= 	Îs�t�
 in the case of a particle-hole
symmetry that simultaneously interchanges the two leads.
Indeed, let us now assume that H is invariant under a trans-
formation where particles on each lead are converted to
opposite-spin holes on the opposite lead �i.e., c�,k,�

†

→ei���c�̄,−k,�̄, where �̄ is the lead index opposite to ��. Un-

der such a transformation, Îc,� is converted to −Îc,�̄, while Îs

is transformed to −Îs. Hence, the instantaneous spin current
Is�t� must necessarily be zero whenever evolution begins
from thermal equilibrium. By contrast, no general statement
can be made about the charge current in this case, apart from
the obvious identity Ic,��t�=−Ic,�̄�t�.

C. Application to the Kondo Hamiltonian

Our discussion thus far was quite general. We now apply
the symmetry arguments presented above to the Kondo
Hamiltonian of Eq. �1�. It is easy to verify that Eq. �1� is
invariant under the particle-hole transformation

��↑
† �x� → ��↓�x�, ��↓

† �x� → − ��↑�x� �27�

�corresponding to ��,k,�
† → ���,−k,�̄�, regardless of the local

field H and the Kondo couplings J

��=J


��. Hence, the instan-
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taneous charge current for tunneling through a Kondo impu-
rity is strictly zero in the absence of a voltage bias, as fol-
lows from the general discussion of Sec. III A. In particular,
no charge can be pumped through the system unless a finite
amplitude for potential scattering is introduced into the
Hamiltonian. Although the description of real quantum dots
typically requires the inclusion of a potential-scattering term,
the latter can be made negligibly small by operating the de-
vice deep in the Kondo regime. In this manner, charge trans-
port can be excluded.

Similarly, it is straightforward to confirm that the Hamil-
tonian of Eq. �1� is invariant under the combined transforma-
tion

��↑
† �x� → ��̄↓�x�, ��↓

† �x� → − ��̄↑�x� �28�

�corresponding to ��,k,�
† → ���̄,−k,�̄�, provided the intralead

exchange couplings obey J

LL=J


RR. Thus, the instantaneous
spin current is strictly zero if the spin couples equally to the
two leads, as follows from the general discussion of Sec.
III B. Spin pumping therefore requires asymmetric coupling
to the two leads at least in some stretches of time.

It is instructive to rederive these results based on the sym-
metries of the transformed Hamiltonian H�+Hint, which
serves primarily as a check for the correctness of Eqs. �3�
and �22�. Other than the free kinetic-energy term, the flavor
field � f enters both H� and Hint only in the form of �̂ f

−,
which is invariant under the particle-hole transformation

� f ,k
† → − � f ,−k. �29�

Note that the latter transformation is restricted to the flavor
sector. Consequently, H�+Hint is invariant under the trans-
formation of Eq. �29�, while the charge-current operator, be-

ing proportional to �̂ f
+, transforms according to Îc�→−Îc� �see

Eq. �23��. This in turn demands that Ic�t� be zero in the
absence of a voltage bias, in agreement with the general
symmetry considerations of Eq. �27�.

Similarly, when J

LL=J


RR, the couplings Jsf
− and Jz

− drop
from the transformed Hamiltonian H�+Hint, which now de-
pends on the field �sf either through the free kinetic-energy
term or in the form of �̂sf

+ . As a result, the transformed
Hamiltonian is invariant under the spin-flavor particle-hole
transformation

�sf,k
† → �sf,−k, �30�

while the spin-current operator, being proportional to �̂sf
− ,

acquires an extra minus sign: Îs�→−Îs� �see Eq. �24��. This in
turn implies that the instantaneous spin current Is�t� is strictly
zero if the leads couple equally to the spin, in agreement
with the symmetry considerations of Eq. �28�. Interestingly,
Is�t� remains zero for symmetric coupling also in the pres-
ence a finite bias, as the latter couples solely to the flavor
field. This result, originally derived in Ref. 33 for nonequi-
librium steady state, also extends to time-dependent cou-
plings and time-dependent bias.

IV. PUMPED SPIN CURRENT

Having established that the instantaneous charge current
vanishes for a generic Kondo model in the absence of a

voltage bias, we focus our attention hereafter on the spin

current. To this end, we evaluate Is�t�= 	Îs�t�
 exactly on the
Toulouse manifold by summing all orders of the perturbation
theory in the couplings Jf

−�t� ,Jsf
��t�, and H�t�. We show that a

finite spin current can indeed be pumped through the system
by applying a nonzero magnetic field, provided the spin
couples asymmetrically to the two leads. The calculation
proceeds in three steps. Using the Keldysh technique, we
first derive a formal expression for the instantaneous spin
current in terms of the Majorana Green functions of Eqs.
�13�–�15�. This portion of the derivation makes no assump-
tion on the time-dependent couplings, apart from the restric-
tion to the Toulouse manifold and the exclusion of an applied
voltage bias. The resulting expression is recast in turn in Sec.
IV B in terms of a time-dependent scattering matrix for the
Majorana fermions, defined in Eq. �46� below. The latter
scattering matrix reduces in equilibrium to the Fourier trans-
form �with respect to energy� of the conventional single-
particle scattering matrix. Finally, a systematic gradient ex-
pansion is carried out in Sec. IV C for the case of slowly
varying potentials, resulting in a Brouwer-type formula for
the adiabatically pumped spin current.

A. General formulation

We begin by formally deriving the instantaneous spin cur-
rent Is�t� using the Keldysh technique for general time-
dependent couplings on the Toulouse manifold. As is always
the case with the Keldysh approach, we assume that the per-
turbations Jsf

�, Jf
−, and H have been switched on at some

distant time in the past, t0→−	, prior to which the system
was in thermal equilibrium.

To set the stage for the Keldysh formalism, the spin cur-
rent Is�t� is first written as

Is�t� =
i

2
�Jsf

− �t�Ga,sf+
� �t,t� − Jsf

+ �t�Gb,sf−
� �t,t�� , �31�

where

Ga,sf+
� �t,t�� = 	�̂sf

+ �t��â�t�
 , �32�

Gb,sf−
� �t,t�� = 	�̂sf

− �t��b̂�t�
 �33�

�see Eq. �12��. Using standard diagrammatics, each of the
latter correlators is expressed in an exact manner as

Ga,sf+
� �t,t�� = − i�

−	

	

Jsf
+ ����Gab

� �t,��gsf,+,+
a ��,t��

+ Gab
r �t,��gsf,+,+

� ��,t���d� , �34�

Gb,sf−
� �t,t�� = − i�

−	

	

Jsf
− ����Gba

� �t,��gsf,−,−
a ��,t��

+ Gba
r �t,��gsf,−,−

� ��,t���d� , �35�

where

g,p,p�
� �t,t�� = 	�̂

p��t���̂
p�t�
0 �36�

and
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g,p,p�
a �t,t�� = i��t� − t�	��̂

p�t�,�̂
p��t���
0 �37�

are the unperturbed Green functions for the local Majorana
fields. Here, = f ,sf and p , p�= �1. The zero subscripts in
Eqs. �36� and �37� come to indicate that both the time evo-
lution and statistical averaging are taken with respect to the
unperturbed Hamiltonian, i.e., the free kinetic-energy part of
Eq. �3�.

In writing Eqs. �34� and �35�, we have used the fact that
gf ,−,+

� and gf ,−,+
a identically vanish as long as no voltage bias

is applied.43 Indeed, in the wide-band limit, Eqs. �36� and
�37� take the explicit forms

g,p,p�
� �t,t�� = 2��0�pp�F�t − t�� �38�

and

g,p,p�
a �t,t�� = i��0�pp���t − t�� , �39�

where F�t� is the Fourier transform of the Fermi function
f���:

F�t� = lim
�→0+

�
−	

	 d�

2�
e−i�te−����f��� . �40�

The limiting procedure used in Eq. �40� corresponds to regu-
larizing the conduction-electron density of states per unit
length according to ����=�0e−���� and taking the wide-band
limit D=1 /�→	. Equation �39� is slightly modified for a
finite bandwidth D �Ref. 44� but remains proportional to
�pp�. Inserting Eqs. �38� and �39� into Eqs. �34� and �35� and
plugging the resulting expressions into Eq. �31�, one obtains

Is�t� = i
��0

2
Jsf

+ �t�Jsf
− �t��Gab

� �t,t� − Gba
� �t,t��

+ ��0�
−	

	

�Jsf
− �t�Gab

r �t,��Jsf
+ ���

− Jsf
+ �t�Gba

r �t,��Jsf
− ����F�� − t�d� . �41�

It is easy to see at this point that the instantaneous spin
current vanishes in the absence of an applied magnetic field,
as it physically should. Indeed, setting H=0 in Eq. �3�, the

two Majorana fermions â and b̂ decouple within the Hamil-

tonian H�. As a result, the Green functions Gab and Gba
identically vanish, as does Is. It is also apparent that Is is
strictly zero unless the impurity couples asymmetrically to
the two leads, in accordance with the general symmetry ar-
guments of Sec. III C. In fact, Is�t� vanishes not only when
J�

LL=J�
RR but also for J�

LL=−J�
RR, which stems from yet an-

other symmetry of the Toulouse-limit Hamiltonian. Specifi-
cally, Eq. �3� is invariant for Jsf

+ =0 under the particle-hole

transformation �sf,k→−�sf,−k
† , while Îs transforms according

to Îs→−Îs. Consequently, Is�t�=−Is�t� must necessarily van-
ish when J�

LL=−J�
RR.

B. Time-dependent scattering matrix

Although formally exact, Eq. �41� requires knowledge of
the time-dependent Green functions Gab and Gba, which are
difficult to compute for a general time-dependent setting. In
order to implement the adiabatic limit, it is useful to first
recast Eq. �41� in terms of a time-dependent scattering ma-
trix to be defined below. This goal requires a sequence of
steps, starting with expressing the lesser Green functions Gab

�

and Gba
� in terms of the retarded and advanced Green func-

tions. Since the Hamiltonian of Eq. �3� is quadratic, one has
the identities

Gab
� �t,t� = 2��0�

−	

	

d��
−	

	

d���Gaa
r �t,���Jsf

− ���Jsf
− ����

+ Jf
−���Jf

−�����Gab
a ���,t�

+ Gab
r �t,��Jsf

+ ���Jsf
+ ����Gbb

a ���,t��F�� − ��� ,

�42�

Gba
� �t,t� = 2��0�

−	

	

d��
−	

	

d���Gba
r �t,���Jsf

− ���Jsf
− ����

+ Jf
−���Jf

−�����Gaa
a ���,t�

+ Gbb
r �t,��Jsf

+ ���Jsf
+ ����Gba

a ���,t��F�� − ��� .

�43�

Substituting Eqs. �42� and �43� into Eq. �41�, it is convenient
to introduce the scattering T matrix associated with the
Majorana fields �̂sf

� and �̂ f
−,

Tr,a�t,t�� = 2��0�
Jsf

+ �t�Gbb
r,a�t,t��Jsf

+ �t�� Jsf
+ �t�Gba

r,a�t,t��Jsf
− �t�� Jsf

+ �t�Gba
r,a�t,t��Jf

−�t��

Jsf
− �t�Gab

r,a�t,t��Jsf
+ �t�� Jsf

− �t�Gaa
r,a�t,t��Jsf

− �t�� Jsf
− �t�Gaa

r,a�t,t��Jf
−�t��

Jf
−�t�Gab

r,a�t,t��Jsf
+ �t�� Jf

−�t�Gaa
r,a�t,t��Jsf

− �t�� Jf
−�t�Gaa

r,a�t,t��Jf
−�t�� � . �44�

Here, the row and column indices i=1,2 ,3 are identified with �sf , + �, �sf ,−�, and �f ,−�, respectively. In terms of the T matrix
specified above, the spin current is written as
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Is�t� =
1

4�−	

	

d� �Tr�t,��F�� − t� − F�t − ��Ta��,t��

+ i�
−	

	

d��
−	

	

d��Tr�t,��F�� − ���Ta���,t��
�sf−,sf+�

−
1

4�−	

	

d� �Tr�t,��F�� − t� − F�t − ��Ta��,t��

+ i�
−	

	

d��
−	

	

d��Tr�t,��F�� − ���Ta���,t��
�sf+,sf−�

.

�45�

Finally, the time-dependent scattering matrix for the Majo-
rana fields �̂

� is defined as

S̃�t,t�� = ��t − t��1 − iTr�t,t�� , �46�

S̃†�t,t�� = ��t − t��1 + iTa�t,t�� , �47�

allowing us to compactly rewrite Eq. �45� in the form

Is�t� =
1

2
Im �

−	

	

d��
−	

	

d���S̃�t,��F�� − ���S̃†���,t���sf+,sf−�.

�48�

A word is in order at this point about the time-dependent

scattering matrix of Eq. �46�. Physically, S̃�t , t�� describes the
scattering of an incoming Majorana fermion at time t� to an
outgoing Majorana fermion at time t. It reduces in equilib-
rium to the Fourier transform �with respect to energy� of the
conventional single-particle scattering matrix and remains an
exclusive function of the time difference �t= t− t� under gen-
eral steady-state conditions. Although this ceases to be the

case in the presence of time-varying fields, S̃�t , t�� continues
to satisfy the generalized unitarity relation

�
−	

	

d� S̃�t,��S̃†��,t�� = ��t − t��1 , �49�

to be utilized below.

C. Gradient expansion and Brouwer-type formula

The main achievement of Eq. �48� is the expression of the
instantaneous spin current in terms of the time-dependent

scattering matrix S̃�t , t��. For a general periodic modulation
of the couplings Jsf

�, Jf
−, and H, the instantaneous spin current

at time t depends on the specifics of the pumping cycle, for
example, the history and rates at which parameters are var-
ied. As we show below, this is not the case in the adiabatic
limit, where the only information needed to predict the
pumped spin per cycle is �i� the shape of the pumping tra-
jectory in parameter space and �ii� the equilibrium S matrix
along the trajectory. Similar to adiabatic quantum pumping
in noninteracting systems, the adiabatic limit is approached
when the characteristic modulation frequency � obeys �
��a ,�b at each point along the pumping trajectory. Here, �a

and �b are the energy scales defined in Eqs. �17� and �18�,
respectively.

To substantiate these claims and devise a Brouwer-type
formula for adiabatic quantum spin pumping in the Kondo
regime, we resort to a systematic gradient expansion of Eq.
�48�. To this end, we first introduce the Wigner transform of
the time-dependent scattering matrix,

S��,T� = �
−	

	

d�ei�� S̃�T +
�

2
,T −

�

2
� . �50�

Next, we apply the well-developed machinery of the gradient
expansion.45 For example, the Wigner transform of the con-
volution of two functions,

�A�B���,T� = �
−	

	

d�ei���
−	

	

d��A�T +
�

2
,���B���,T −

�

2
� ,

�51�

has the formally exact representation45

�A�B���,T� = exp 1

2i
��T

A��
B − �T

B��
A��A��,T�B��,T�

= A��,T�B��,T� +
1

2i
��TA��B − ��A�TB� + ¯ .

�52�

Here, �A and �B stand for differential operators that act on
A�� ,T� and B�� ,T�, respectively. The usefulness of Eq. �52�
comes into play when the expansion on the right-hand side is
controlled by a small parameter. This is indeed the case in
the present context, where the double convolution of Eq. �48�
possesses an analogous expansion in gradients of S�� ,T�.
Each combined derivative �T�� is parametrically reduced for

Eq. �48� by a factor of � / �̄, where �̄ is some characteristic
value of either �a or �b in the relevant time interval. The

scale �̄ is bounded from below by the minimum of �a and �b
along the pumping cycle, a quantity denoted hereafter by �.
Hence, for ���, one can settle with linear order in �T�� to
obtain

Is�t� = Im �
−	

	 d�

4�
�SS† +

1

2i
���tS����S

†� − ���S�

���tS
†��� f��� +

1

2i
�S��tS

†� − ��tS�S†�

��−
�f���

��
��

�sf+,sf−�
. �53�

Here and in the following, T coincides with t. All terms
omitted in Eq. �53� are of order �� /��2 or higher, and thus
can be safely neglected.46

The term proportional to the Fermi function f��� in Eq.
�53� is purely diagonal to order O�� /��, as can be seen by
expanding the unitarity relation of Eq. �49� to first order in
time gradients:
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SS† +
1

2i
���tS����S

†� − ���S���tS
†�� + O���/��2� = 1 .

�54�

Since Eq. �53� requires an off-diagonal matrix element of the
expression in the square brackets, the instantaneous spin cur-
rent reduces in the adiabatic limit to

Is�t� = Re �
−	

	 d�

8�
f�����S��tS

†� − ��tS�S†��sf+,sf−�. �55�

This expression can be further simplified by noting that
S�� , t� is equal to leading order in � /� to the instantaneous
scattering matrix, i.e., the equilibrium scattering matrix with
all system parameters Jsf

�, Jf
−, and H frozen at their instanta-

neous values at time t:

S��,t� = Seq„�;Jsf
��t�,Jf

−�t�,H�t�… + O��/�� . �56�

Consequently, one can substitute Seq in for S in Eq. �55�.
Lastly, one can exploit the unitarity of the equilibrium S
matrix, SeqSeq

† =1, to replace ��tSeq�Seq
† with −Seq��tSeq

† � in
Eq. �55�. This yields the final expression for the spin current,

Is�t� = Re��
−	

	 d�

4�
f�����S��tS

†���sf+,sf−�� . �57�

Here and in the remainder of the paper, the symbol S is used
as a shorthand for the instantaneous scattering matrix
Seq(� ;Jsf

��t� ,Jf
−�t� ,H�t�).

Equation �57� is exact in the adiabatic limit, �→0. Its
derivation was based on a systematic truncation of higher
order terms in �, controlled by the expansion parameter
� /�. It therefore encompasses all pumping trajectories and
all coupling regimes, whether weak or strong. This should be
contrasted with the commonly used linear-response theory,
which is restricted, strictly speaking, to weak coupling only.

In the following, we shall consider examples of pumping
cycles where two system parameters, generically termed X1
and X2, are varied slowly and periodically in time along a
certain closed trajectory C in parameter space. The quantity
of interest in this case is the total magnetization in the z
direction �or spin� transferred from left to right in a single
pumping cycle. The latter quantity is defined as

	S
 = �
C

Is�t�dt , �58�

where Is�t� is the instantaneous spin current. Using Eq. �57�,
one can express 	S
 as a line integral along the contour C,

	S
 = Re��
−	

	 d�

4�
f�����

C
�S�� S†��sf+,sf−� · dX�� . �59�

This expression applies to the variation of any number of
system parameters X1 , . . . ,XN. In the particular case where
N=2, one can make use of Green’s theorem to express the
spin pumped per cycle as a geometric property of the
Majorana-fermion scattering matrix, analogous to Brouwer’s
formula for noninteracting systems. Explicitly, 	S
 assumes
the form

	S
 = Re �
−	

	 d�

4�
f�����

A
dX1dX2

���X1
S�X2

S† − �X2
S�X1

S†��sf+,sf−�, �60�

where A is the �oriented� area in parameter space enclosed
by the contour C.

Equation �60� is the central result of our study. We devote
the remainder of the paper to analyzing its implications for a
particular class of pumping trajectories defined below.

V. APPLICATIONS

We conclude our analysis by applying the formula derived
above to study a particularly simple class of pumping cycles
where one parameter, X1, controls the transverse Kondo cou-
plings, and the other parameter, X2, controls the applied mag-
netic field. Based on our Toulouse-limit calculations, we will
show that such a cycle can be used to realize a pure quan-
tized spin pump, namely, quantized spin pumping without
any charge transport.

To make contact with realistic systems such as quantum
dots, we impose hereafter the condition J�

LLJ�
RR= �J�

LR�2, cor-
responding to �Jsf

− �2+ �Jf
−�2= �Jsf

+ �2. As mentioned above, this
condition best describes the strong-coupling physics of the
Anderson impurity model, where a single Kondo scale �a
=�b�TK emerges. Keeping Jsf

+ , and thus TK, fixed, we pa-
rametrize Jsf

− , Jf
−, and �BgiH according to

Jsf
− = X1, �61�

Jf
− = ��Jsf

+ �2 − X1
2, �62�

and

�BgiH = X2. �63�

In terms of the original Kondo couplings to the two leads,
Eqs. �61� and �62� translate to

J�
LL/RR = �2�a�Jsf

+ � X1� , �64�

J�
LR = �2�a��Jsf

+ �2 − X1
2. �65�

The pumping cycle under consideration is depicted sche-
matically in Fig. 2. It consists of four segments, two in which
X1 is tuned from �Jsf

+ to �Jsf
+ while X2 is kept fixed �lines �a�

and �c�� and two in which X2 is tuned from �h to �h while
X1 is held fixed �lines �b� and �d��. The cycle C thus consists
of periodic opening and closing of the transverse couplings
to the left and right leads, followed by inversion of the ap-
plied magnetic field at points where spin-flip scattering is
restricted to one lead only. The analogous cycle for real
quantum dots comprises of periodic opening and closing of
the tunneling rates to the left and right leads, followed by
inversion of the applied magnetic field at points where tun-
neling is restricted to one lead only.

Combining Eq. �60� for 	S
 with Eqs. �46�, �47�, �44�, and
�16� for the instantaneous S matrix, one obtains the following
result after some straightforward but tedious algebra:
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	S
 = −
2�

�
�

−	

	

d�f����Re� hTK

h2 + �TK − i��2�
+ arctan�h + �

TK
�� . �66�

Here, we have restored � for proper units of 	S
. Represen-
tative plots of 	S
 as a function of both h and T are shown in
Fig. 3. As expected of the Kondo regime, 	S
 is an exclusive
function of the rescaled parameters h /TK and T /TK. In par-
ticular, at T=0, one finds

	S
 =
2�

�
� h

TK
+

TK

h
�−1

+ arctan� h

TK
�� , �67�

which has the formal expansion 	S
 /�=1−O��TK /h�3�.
Hence, the pumped spin per cycle is closely quantized to �

when the magnetic field H performs a large enough excur-
sion along the pumping cycle. The effect of a temperature is
to reduce the spin pumped per cycle. However, 	S
 remains
closely quantized to � when h�TK ,T. Importantly, when T
�TK, it suffices that h will only moderately exceed TK in
order for 	S
 to closely approach �. For example, at T=0, the
pumped spin per cycle is equal to 0.82� �0.96�� by the time
h=TK �h=2TK�.

The above results were derived at the Toulouse limit,
which does not correspond to any realistic parameters. It is
therefore pertinent to question the relevance of these results
to actual quantum dots. Since any exact solution can be used
to extract universal low-energy properties of the Kondo ef-
fect, we expect Eq. �66� to be quantitatively correct when
T ,h�TK. Equation �66� should remain qualitatively correct
as one of the parameters T or h becomes comparable to TK,
though quantitative deviations are expected. Still, since 	S

approaches � quite rapidly with increasing h �essentially by
h�TK� and since the departure from strong coupling is only
logarithmically slow in h, we expect 	S
 to remain nearly
quantized in real quantum dots provided T�TK. This picture
is further supported by a naive application of Brouwer’s for-
mula using the exact T=0 single-particle scattering matrix47

and by slave-boson mean-field theory of the corresponding
Anderson model.13 The Toulouse limit fails, however, to de-
scribe the weak-coupling regime, as certain bare couplings
are required to be large. In particular, Eq. �66� should neither
be quantitatively nor qualitatively correct when TK�T.

A simple interpretation of Eq. �66� follows from the ob-
servation that the ground state of the Kondo model is that of
a local Fermi liquid. Only resonant elastic scattering takes
place at the Fermi level when T=0, as reflected in the
Abrikosov-Suhl resonance. The latter resonance is pinned to
the Fermi energy when H=0 and is split by an applied mag-
netic field. This basic phenomenology can be mimicked by a
simple noninteracting resonant-level model,

HRLM = �
�=L,R

�
k,�

�k�k��
† �k�� − �BgiH�d↑

†d↑ − d↓
†d↓�

+ �
k,�,�

V���k��
† d� + H.c.� , �68�

which is studied below. Here, �k��
† creates an electron with

wave number k and spin projection � on lead � ��=L ,R�,
while d�

† creates a localized electron on the level.
Allowing for slow periodic modulation of H and V� in Eq.

�68�, we extract the adiabatically pumped spin and charge
along a closed pumping cycle analogous to the one shown in
Fig. 2. For a generic trajectory C in the parameter space
�X1 ,X2� defined below, the adiabatically pumped spin and
charge are given for HRLM by the standard Brouwer formula

	S
 = ��
�

��
−	

	 d�

4�i
f�����

A
dX1dX2��X1

S��X2
S�

†

− �X2
S��X1

S�
†�LL �69�

and

Jsf
+ X1

Jsf
+

(a)(b)

(c) (d)

X2

−

−

h

h

FIG. 2. The pumping cycle under consideration in Sec. V. The
first pumping parameter, X1, controls the Kondo couplings Jsf

− and
Jf

−, which vary according to Jsf
− =X1 and Jf

−=��Jsf
+ �2−X1

2. The third
Kondo coupling, Jsf

+ , is held fixed throughout the cycle, along with
TK. The second pumping parameter, X2, controls the Zeeman split-
ting �BgiH, which varies according to �BgiH=X2.
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FIG. 3. �Color online� The spin pumped per cycle, 	S
, in units
of � �a� plotted as a function of h /TK for different T and �b� plotted
as a function of T /TK for different h. For T�TK, the spin pumped
per cycle rapidly approaches � with increasing h. Explicitly, 	S

exceeds 0.9� for all T�0.45TK when h=2TK.
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	Q
 = − e�
�
�

−	

	 d�

2�i
f�����

A
dX1dX2��X1

S��X2
S�

†

− �X2
S��X1

S�
†�LL. �70�

Here, �= ↑ ,↓ and �= �1 are used interchangeably to label
the spin projection. The domain of integration, A, is the �ori-
ented� area in parameter space enclosed by the contour C.
The instantaneous S matrix pertaining to HRLM is written in
the L−R basis as

S���� = 1 − 2i�LG�
r ��� − 2i��L�RG�

r ���

− 2i��L�RG�
r ��� 1 − 2i�RG�

r ���
� , �71�

where

G�
r ��� =

1

� − ��BgiH + i�+
�72�

is the associated dot Green function. Here, �+=�L+�R with
��=��0V�

2 is the resonance width, which plays the role of
the Kondo temperature in the Kondo model.

By analogy with the cycle of Fig. 2, we vary the two
pumping parameters X1=�L−�R and X2=�BgiH while �+ is
held fixed. As before, the cycle is composed of four seg-
ments, two in which X1 is tuned from ��+ to ��+ while X2
is kept fixed and two in which X2 is tuned from �h to �h
while X1 is held fixed. Using Eqs. �69�–�72� for this cycle,
one obtains 	Q
=0 and

	S
 = −
2�

�
�

−	

	

d�f����Re� h�+

h2 + ��+ − i��2�
+ arctan�h + �

�+
�� . �73�

Both results are identical to those obtain at the Toulouse
limit, provided �+ is identified with TK. Thus, the physical
picture underlying Eq. �66� is consistent with that of simple
resonant elastic scattering, where a single resonance is sym-
metrically split about the Fermi energy by an applied mag-
netic field.

From a theoretical standpoint, it is clear that one can re-
alize a quantized spin pump using either a quantum dot in the
Kondo regime or a Zeeman-split single-particle resonance
that is tuned to the Fermi energy. However, practical consid-
erations make the Kondo-dot scenario a more promising can-
didate for the realization of such a device. Indeed, modula-
tion of the couplings to the two leads is typically
accompanied in real devices by a capacitive shift of the dot
level. In the case of a simple resonance, the induced modu-
lation of the dot level will generally produce a finite charge
current and is likely to spoil the quantization of the pumped
spin. The Kondo-dot scenario is immune to such fluctuations,
as these produce only a tiny shift of the Abrikosov-Suhl reso-
nance. Indeed, as discussed in Sec. III, charge transport is
strictly forbidden as long as the Coulomb-blockaded dot can
be described in terms of a pure Kondo Hamiltonian having
no potential scattering. Although a realistic description of
quantum dots generally requires the inclusion of potential

scattering, the latter term can be made negligibly small by
operating the device deep in the Kondo regime. In this man-
ner, charge transport can be excluded.

VI. CONCLUSIONS

In this paper, we have presented an exact analysis of adia-
batic quantum pumping through a quantum dot in the Kondo
regime. It follows from general symmetry arguments that the
instantaneous charge current is strictly zero in the absence of
potential scattering and for zero voltage bias. A similar state-
ment applies to the symmetrized spin current either in the
absence of an applied magnetic field or for symmetric cou-
pling to the leads. Pumping of a spin current therefore re-
quires both a finite magnetic field and for left-right symmetry
to be simultaneously broken. Both conditions are readily met
in practical devices, making ultrasmall quantum dots a natu-
ral candidate for the realization of a spin battery.

To quantify this statement, we have computed the pumped
spin current exactly at the Toulouse limit. Exploiting the
mapping onto a quadratic Hamiltonian and performing a
controlled expansion in the small parameter � /TK �� being
the characteristic modulation frequency, TK is the Kondo
temperature�, we have expressed the pumped spin per cycle
as a geometric property of the scattering matrix associated
with three flavors of Majorana fermions, which are the effec-
tive degrees of freedom at the Toulouse limit. In particular,
employing the coupling to the leads as one pumping param-
eter and the applied magnetic field as another, we have
shown that one can devise pumping cycles that realize a pure
quantized spin pump, namely, a device for which the average
spin pumped per cycle is closely equal to � but where no
accompanying charge current is produced. We expect the
pumped spin per cycle to remain nearly quantized in real
quantum dots provided that one operates at T�TK.

There have been by now a number of different proposals
in the literature for the realization of spin pumps, employing
diverse setups such as chaoticity in quantum dots,15 ferro-
magnetic leads,17 spin-orbit interactions,16,19 classical turn-
stile cycles,18 one-dimensional Luttinger-liquid physics,14

and, finally, the Kondo effect in quantum dots.13 While all
these proposals reported schemes to realize a pure adiabatic
spin pump along specific cycles, the quantization of the spin
pumped per cycle has been shown to be the case only in the
classical turnstile setup18 and for a Luttinger liquid.14 In con-
trast to Ref. 18, the pumping scheme investigated in this
paper offers an interesting possibility to realize a coherent
quantized spin pump, in which the absence of charge current
is essentially warranted along all possible cycles �including
beyond the adiabatic limit�.

The quantization of the pumped spin per cycle reported in
this paper is subject to small deviations as the temperature T
becomes of order TK or as the magnetic-field excursion is
altered. Moreover, it applies only to the average spin
pumped per cycle. In order to better characterize such a
quantum pump, a detailed study of its noise properties �and
full counting statistics� is desirable. A study of the statistical
properties of the Kondo pump is a challenge left for future
work.
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